超聲波清洗處理主要是利用化學試劑的作用和超聲波自身所具有的對被處理件的“空化”化用的協(xié)同作用來完成的。它具有云污能力強,可集除油除銹為一體,占地少,操作簡單,等優(yōu)點。但該處理方法具有很強的針對笥和選擇性,如應用于微銹或無銹,油污雖較嚴重但材質(zhì)為A3的冷軋件,可望取得較好的綜合效益。但如應用于銹鉵嚴重,氧化皮較厚的A3熱軋件,則難取得令人滿意的效果,不僅處理量小,而且成本高,原因在于1。其處理液中的化學試劑是磷酸,不僅價格昂貴,而且本身的除銹能力極為有限,雖然超聲波的“空化”作用加強了除銹能力,但當處理液中Fe3+離子含量達到或超過某一濃度時,其除銹能力即迅速下降。所處理的是A3熱軋件,銹鉵嚴重,工件表面的銹鉵快速剝落或溶解將促使處理液中Fe3+離子含量的快速飽和,其結果,不僅降低超聲波的處理和質(zhì)量,而且將促使處理量的快速下降,終將導致處理成本居高不下,而且這個成本尚不包括超聲波設備的電能消耗和置入處理液中換能器的被腐蝕損耗費用。
在確定的條件下,帶電粒子在單位電場強度作用下,單位時間內(nèi)移動的距離(即遷移率)為常數(shù),是該帶電粒子的物化特征性常數(shù)。不同帶電粒子因所帶電荷不同,或雖所帶電荷相同但荷質(zhì)比不同,在同一電場中電泳,經(jīng)一定時間后,由于移動距離不同而相互分離。分開的距離與外加電場的電壓與電泳時間成正比。
電泳(Electrophoresis)是指帶電荷的粒子或分子在電場中移動的現(xiàn)象稱為電泳。大分子的蛋白質(zhì),多肽,病毒粒子,甚至細胞或小分子的氨基酸,核苷等在電場中都可作定向泳動.1937年Tiselius成功地研制了界面電泳儀進行血清蛋白電泳,它是在一U型管的自由溶液中進行的,電泳后用光學系統(tǒng)使各種蛋白所形成折光率差別成為曲線圖象,將血清蛋白分為白蛋白,α1-球蛋白,α2-球蛋白,β-球蛋白和γ-球蛋白五種,隨后,Wielamd 和Kanig 等于1948年采用濾紙條做載體,成功地進行了紙上電泳。從那時起,電泳技術逐漸被人們所接受并予以重視,繼而發(fā)展以濾紙,各種纖維素粉,淀粉凝膠,瓊脂和瓊脂糖凝膠,醋酸纖維素薄膜,聚丙烯酰胺凝膠等為載體,結合增染試劑如銀氨染色,考馬斯亮藍等大大提高和促進生物樣品著色與分辨能力,此外電泳分離和免疫反應相結合,使分辨率不斷朝著微量和超微量(1ng~0.001ng)水平發(fā)展,從而使電泳技術獲得迅速推廣和應用。在此主要介紹常用電泳的一般原理及其應用。
電泳所需的儀器有:電泳槽和電源。 1.電泳槽 電泳槽是電泳系統(tǒng)的核心部分,根據(jù)電泳的原理,電泳支持物都是放在兩個緩沖液之間,電場通過電泳支持物連接兩個緩沖液,不同電泳采用不同的電泳槽.常用的電泳槽有: (1)圓盤電泳槽:有上,下兩個電泳槽和帶有鉑金電極的蓋。上槽中具有若干孔,孔不用時,用硅橡皮塞塞住.要用的孔配以可插電泳管(玻璃管)的硅橡皮塞。電泳管的內(nèi)徑早期為5~7mm,為保證冷卻和微量化,現(xiàn)在則越來越細. (2)垂直板電泳槽:垂直板電泳槽的基本原理和結構與圓盤電泳槽基本相同。差別只在于制膠和電泳不在電泳管中,而是在塊垂直放置的平行玻璃板中間. (3)水平電泳槽:水平電泳槽的形狀各異,但結構大致相同。一般包括電泳槽基座,冷卻板和電極. 電源 要使荷電的生物大分子在電場中泳動,必須加電場,且電泳的分辨率和電泳速度與電泳時的電參數(shù)密切相關。不同的電泳技術需要不同的電壓,電流和功率范圍,所以選擇電源主要根據(jù)電泳技術的需要.如聚丙烯酰胺凝膠電泳和SDS電泳需要200~600V電壓。