粘接是不同材料界面間接觸后相互作用的結(jié)果。界面層的作用是膠粘科學(xué)中研究的基本問題。諸如被粘物與粘料的界面張力、表面自由能、官能基團性質(zhì)、界面間反應(yīng)等都影響膠接。膠接是綜合性強,影響因素復(fù)雜的一類技術(shù),而現(xiàn)有的膠接理論都是從某一方面出發(fā)來闡述其原理,所以至今的理論是沒有的。聚合物之間,聚合物與非金屬或金屬之間,金屬與金屬和金屬與非金屬之間的膠接等都存在聚合物基料與不同材料之間界面膠接問題。
下述粘接理論考慮的基本點都與粘料的分子結(jié)構(gòu)和被粘物的表面結(jié)構(gòu)以及它們之間相互作用有關(guān)。粘接強度不僅與被粘劑與被粘物之間作用力有關(guān),也與聚合物粘料的分子之間的作用力有關(guān)。高聚物分子的化學(xué)結(jié)構(gòu),以及聚集態(tài)都強烈地影響膠接強度,研究膠粘劑基料的分子結(jié)構(gòu),對設(shè)計、合成和選用膠粘劑都十分重要。
1、吸附理論:
人們把固體對膠粘劑的吸附看成是膠接主要原因的理論,稱為膠接的吸附理論。理論認為:粘接力的主要來源是粘接體系的分子作用力,即范德化引力和氫鍵力。膠粘與被粘物表面的粘接力與吸附力具有某種相同的性質(zhì)。
膠粘劑的極性太高,有時候會嚴重妨礙濕潤過程的進行而降低粘接力。分子間作用力是提供粘接力的因素,但不是因素。在某些特殊情況下,其他因素也能起主導(dǎo)作用。
膠粘劑分子與被粘物表面分子的作用過程有兩個過程:階段是液體膠粘劑分子借助于布朗運動向被粘物表面擴散,使兩界面的極性基團或鏈節(jié)相互拉近,在此過程中,升溫、施加接觸壓力和降低膠粘劑粘度等都有利于布朗運動的加強。第二階段是吸附力的產(chǎn)生。當(dāng)膠粘劑與被粘物分子間的距離達到10-5?時,界面分子之間便產(chǎn)生相互吸引力,使分子間的距離進一步縮短到處于穩(wěn)定狀態(tài)。
根據(jù)計算,由于范德華力的作用,當(dāng)兩個理想的平面相距為10?時,它們之間的引力強度可達10-1000MPa;當(dāng)距離為3-4?時,可達100-1000MPa。這個數(shù)值遠遠超過現(xiàn)代的結(jié)構(gòu)膠粘劑所能達到的強度。因此,有人認為只要當(dāng)兩個物體接觸很好時,即膠粘劑對粘接界面充分潤濕,達到理想狀態(tài)的情況下,僅色散力的作用,就足以產(chǎn)生很高的膠接強度??墒菍嶋H膠接強度與理論計算相差很大,這是因為固體的力學(xué)強度是一種力學(xué)性質(zhì),而不是分子性質(zhì),其大小取決于材料的每一個局部性質(zhì),而不等于分子作用力的總和。計算值是假定兩個理想平面緊密接觸,并保證界面層上各對分子間的作用同時遭到破壞時,也就不可能有保證各對分子之間的作用力同時發(fā)生。
2、 化學(xué)鍵形成理論:
化學(xué)鍵理論認為膠粘劑與被粘物分子之間除相互作用力外,有時還有化學(xué)鍵產(chǎn)生,例如硫化橡膠與鍍銅金屬的膠接界面、偶聯(lián)劑對膠接的作用、異氰酸酯對金屬與橡膠的膠接界面等的研究,均證明有化學(xué)鍵的生成。化學(xué)鍵的強度比范德化作用力高得多;化學(xué)鍵形成不僅可以提高粘附強度,還可以克服脫附使膠接接頭破壞的弊病。但化學(xué)鍵的形成并不普通,要形成化學(xué)鍵必須滿足一定的量子化`件,所以不可能做到使膠粘劑與被粘物之間的接觸點都形成化學(xué)鍵。況且,單位粘附界面上化學(xué)鍵數(shù)要比分子間作用的數(shù)目少得多,因此粘附強度來自分子間的作用力是不可忽視的。